Correcting Misalignment of Automatic 3D Detection by Classification: Ileo-Cecal Valve False Positive Reduction in CT Colonography
نویسندگان
چکیده
Ileo-Cecal Valve (ICV) is an important small soft organ which appears in human abdomen CT scans and connects colon and small intestine. Automated detection of ICV is of great clinical value for removing false positive (FP) findings in computer aided diagnosis (CAD) of colon cancers using CT colongraphy (CTC) [1–3]. However full 3D object detection, especially for small objects with large shape and pose variations as ICV, is very challenging. The final spatial detection accuracy often trades for robustness to find instances under variable conditions [4]. In this paper, we describe two significant post-parsing processes after the normal procedure of object (e.g., ICV) detection [4], to probabilistically interpret multiple hypotheses detections. It achieves nearly 300% performance improvement on (polyp detection) FP removal rate of [4], with about 1% extra computional overhead. First, a new multiple detection spatial-fusion method utilizes the initial single detection as an anchor identity and iteratively integrates other “trustful” detections by maximizing their spatial gains (if included) in a linkage. The ICV detection output is thus a set of N spatially connected boxes instead of a single box as top candidate, which shows to correct 3D detection misalignment inaccuracy. Next, we infer the spatial relationship between CAD generated polyp candidates and the detected ICV bounding boxes in 3D volume, and convert as a set of continuous valued, ICV-association features per candidate which allows further statistical analysis and classification for more rigorous false positive deduction in colon CAD. Based on our annotated 116 training cases, the spatial coverage ratio between the new N-box ICV detection and annotation is improved by 13.0% (N=2) and 19.6% (N=3) respectively. An evaluation on large scale datasets of total ∼ 1400 CTC volumes, with different tagging preparations, reports average 5.1 FP candidates are removed at CandidateGeneration stage per scan; and the final CAD system mean FP rate drops from 2.2 to 1.82 per volume, without affecting the sensitivity.
منابع مشابه
Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography
Object detection and recognition has achieved a significant progress in recent years. However robust 3D object detection and segmentation in noisy 3D data volumes remains a challenging problem. Localizing an object generally requires its spatial configuration (i.e., pose, size) being aligned with the trained object model, while estimation of an object’s spatial configuration is only valid at lo...
متن کاملEmploying topographical height map in colonic polyp measurement and false positive reduction
CT Colonography (CTC) is an emerging minimally invasive technique for screening and diagnosing colon cancers. Computer Aided Detection (CAD) techniques can increase sensitivity and reduce false positives. Inspired by the way radiologists detect polyps via 3D virtual fly-through in CTC, we borrowed the idea from geographic information systems to employ topographical height map in colonic polyp m...
متن کاملA CAD Utilizing 3D Massive-Training ANNs for Detection of Flat Lesions in CT Colonography: Preliminary Results
Our purpose was to develop a computer-aided diagnostic (CAD) scheme for detection of flat lesions (also known as superficial elevated or depressed lesions) in CT colonography (CTC), which utilized 3D massive-training artificial neural networks (MTANNs) for false-positive (FP) reduction. Our CAD scheme consisted of colon segmentation, polyp candidate detection, linear discriminant analysis, and ...
متن کاملA Two-Level Approach Towards Semantic Colon Segmentation: Removing Extra-Colonic Findings
Computer aided detection (CAD) of colonic polyps in computed tomographic colonography has tremendously impacted colorectal cancer diagnosis using 3D medical imaging. It is a prerequisite for all CAD systems to extract the air-distended colon segments from 3D abdomen computed tomography scans. In this paper, we present a two-level statistical approach of first separating colon segments from smal...
متن کاملComputer-aided diagnosis scheme for detection of polyps at CT colonography.
Colon cancer is one of the leading causes of cancer deaths in the United States. However, most colon cancers can be prevented if precursor colonic polyps are detected and removed. An advanced computer-aided diagnosis (CAD) scheme was developed for the automated detection of polyps at computed tomographic (CT) colonography. A region encompassing the colonic wall is extracted from an isotropic vo...
متن کامل